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1. First Python Program 

 

Python code Output  

 
print ("Hello, World!") 
 

 

 

2. Python Comments 

 

Single Line Comments 

#This is a comment 

print ("Hello, World!") 
 

print ("Hello, World!") #This is a comment 

#print ("Hello, World!") 

 

Multi Line Comments 

 
#This is a comment 
#written in 
#More than just one line 
print ("Hello, World!") 

 

 
""" 
This is a comment 
written in 
more than just one line 
""" 
print ("Hello, World!") 
 

 

3. Python Variables 

 

• Variables 

Python code output 

 
x = 5 
y = "John" 
print(x) 
print(y) 
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Python code output 

x = 4         
x = "Sally"   
print(x) 

 

 

 

• Casting 

Python code output 

x = str (3)      
y = int (3)      
z = float (3)   
print(x) 
print(y) 
print(z) 
 

 

• Get the Datatype 

Python code output 

x = 5 
y = "John" 
print(type(x)) 
print(type(y)) 

 

 

• Single or Double Quotes? 

Python code output 

x = "John" 
y = 'John' 
print(x) 
print(y) 

 

 

 

• Case-Sensitive 

Python code output 

a = 4 
A = "Sally" 
print(a) 
print(A) 
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Python - Variable Names 

• විචල්‍ය නාමයක් අකුරකින් හ ෝ යටි ඉරි අකුරින් ආරම්භ විය යුතුය 

• විචල්‍ය නාමයක් අංකයකින් ආරම්භ කළ හනා ැක 

• විචල්‍ය නාමයක අඩංගු විය  ැක්හක් ඇල්ෆා-සංඛ්‍යා අක්ෂර ස  යටි ඉරි (A-z, 0-9, ස  _ ) පමණි 

• විචල්‍ය නම් අවස්ථා-සංහේදී හේ (වයස, වයස ස  AGE යනු විවිධ විචල්‍ය තුනකි) 

 

• A variable name must start with a letter or the underscore character 

• A variable name cannot start with a number 

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, 

and _ ) 

• Variable names are case-sensitive (age, Age and AGE are three different variables) 

 

 

Variable names:  Correct or incorrect 

myvar = "John"  

my_var = "John"  

_my_var = "John"  

myVar = "John"  

MYVAR = "John"  

myvar2 = "John"  

2myvar = "John"  

my-var = "John"  

my var = "John"  

 

▪ Multi Words Variable Names 

 

Camel Case Pascal Case Snake Case 

myVariableName = "John" MyVariableName = "John" my_variable_name = "John" 

 

▪ Many Values to Multiple Variables 

Python code output 

x, y, z = "Orange", "Banana", "Cherry" 
print(x) 
print(y) 
print(z) 
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▪ One Value to Multiple Variables 

Python code output 

x = y = z = "Orange" 
print(x) 
print(y) 
print(z)  

 

 

▪ Python - Output Variables 

Python code output 

x = "awesome" 
print ("Python is " + x) 
 

 

 

Python code output 

x = "Python is " 
y = "awesome" 
z = x + y 
print(z) 
 

 

 
 

Python code output 

x = 5 
y = 10 
print (x + y) 
 

 

 

Python code output 

x = 5 
y = "John" 
print (x + y) 
 

 

 
▪ Python - Global and local Variables 

Python code output 

x = "awesome" 
def myfunc(): 
  print("Python is " + x) 
myfunc() 
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4. Python Data Types 

 

Python code output 

x = "awesome" 
def myfunc(): 
  x = "fantastic" 
  print("Python is " + x) 
myfunc() 
print("Python is " + x) 

 

 

 

  

 

▪ Get the Data Type 

Python code output 

x = 5 
print(type(x)) 

 

 

 

▪ Setting the Data Type 

Python code output 

x = "Hello World" 
print(type(x))  

 

 

x = 20 
print(type(x))  

 

 

x = 20.5 
print(type(x))  

 

 

x = ["apple", "banana", "cherry"] 
print(type(x))  

 

 

x = ("apple", "banana", "cherry") 
print(type(x))  

 

Text  str 

Numeric  int, float 

Sequence  list, tuple, range 

Mapping dict 

Set  set 

Boolean  bool 
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x = range (6) 
print(type(x))  

 

 

x = {"name”: "John", "age”: 36} 
print(type(x))  

 

 

x = {"apple", "banana", "cherry"} 
print(type(x)) 

 

 

x = True 
print(type(x))  

 

 

 

▪ Setting the Specific Data Type 

Python code output 

 
x = str("Hello World") 
print(type(x))  
 

 

x = int (20) 
print(type(x))  

 

 
x = float (20.5) 
print(type(x))  
 

 

 

▪ The global Keyword 

Python code output 

 
def myfunc(): 
  global x 
  x = "fantastic" 
 
myfunc() 
 
print("Python is " + x) 
 

 

x = "awesome" 
def myfunc(): 
  global x 
  x = "fantastic" 
myfunc() 
 
print("Python is " + x) 
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Python Numbers 

▪ Type Conversion 

Python code output 

x = 1      
y = 2.8    
a = float(x) 
b = int(y) 
print(a) 
print(b) 
print(type(a)) 
print(type(b)) 

 

 

▪ Random Number 

Python code output 

import random 
print(random.randrange(1, 50)) 

 

 

 

Python Casting 

 

Python code output 

x = int (1)     
y = int (2.8)   
z = int ("3")  
print(x) 
print(y) 
print(z) 

 

x = float (1)       
y = float (2.8)     
z = float ("3”)   
w = float ("4.2")  
print(x) 
print(y) 
print(z) 
 

 

x = str("s1")  
y = str (2)      
z = str (3.0)   
print(x) 
print(y) 
print(z) 
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Python Strings 

 

Python code output 

print("Hello") 
print('Hello') 

 

 

 

Python code output 

a = "Hello" 
print(a) 

 

 

 

▪ Multiline Strings 

Python code output 

a = """Python is a high-level, general-purpose 
programming language.""" 
print(a) 

 

 

a = '''Python is a high-level, general-purpose 
programming language. ''' 
print(a) 

 

 

 

▪ Strings are Arrays 

Python code output 

a = "Hello, World!" 
print(a[1]) 

 

 

▪ Looping Through a String 

Python code output 

for x in "banana": 
  print(x) 
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▪ String Length 

Python code output 

a = "Hello, World!" 
print(len(a)) 
 

 

▪ Check String 

Python code output 

txt = "The best things in life are free!" 
print("free" in txt) 
 

 

txt = "The best things in life are free!" 
if "free" in txt: 
  print("Yes, 'free' is present.") 
 

 

 

▪ Check if NOT 

Python code output 

txt = "The best things in life are free!" 
print("expensive" not in txt) 
 

 

txt = "The best things in life are free!" 
if "expensive" not in txt: 
  print("Yes, 'expensive' is NOT present.") 
 

 

 

▪ Python - Slicing Strings 

Python code output 

b = "Hello, World!" 
print(b[2:5]) 
 

 

▪ Slice from the Start 

Python code output 

b = "Hello, World!" 
print(b[:5]) 
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▪ Slice to the End 

Python code output 

b = "Hello, World!" 
print(b[2:]) 
 

 

▪ Negative Indexing 

Python code output 

b = "Hello, World!" 
print(b[-5:-2]) 
 

 

▪ Upper Case 

Python code output 

a = "Hello, World!" 
print(a.upper()) 
 

 

 

▪ Split 

Python code output 

a = "Hello, World!" 
print(a.split("l"))  
 

 

 

▪ String Concatenation 

Python code output 

a = "Hello" 
b = "World" 
c = a + b 
print(c) 
 

 

a = "Hello" 
b = "World" 
c = a + " " + b 
print(c) 
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▪ Python - Format - Strings 

Python code output 

age = 36 
txt = "My name is John, I am " + age 
print(txt) 
 

 

 

Python code output 

age = 36 
txt = "My name is John, and I am {}" 
print(txt.format(age)) 
 

 

 

Python code 

quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want {} pieces of item {} for {} dollars." 
print(myorder.format(quantity, itemno, price)) 
 

output 

 

 

Python code 

quantity = 3 
itemno = 567 
price = 49.95 
myorder = "I want to pay {2} dollars for {0} pieces of item {1}." 
print(myorder.format(quantity, itemno, price)) 
 

output 
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▪ Python - Escape Characters 

Python code 

txt = "We are the so-called "Vikings" from the north." 
print(txt) 

 

txt = "We are the so-called \"Vikings\" from the north." 
print(txt) 

 

txt = "We are the so-called \\Vikings\\ from the north." 
print(txt) 

 

txt = "We are the so-called \nVikings\n from the north." 
print(txt) 

 

txt = "We are the so-called \rVikings\r from the north." 
print(txt) 

 

txt = "We are the so-called \tVikings\t from the north." 
print(txt) 

 

txt = "We are the so-called \bVikings\b from the north." 
print(txt) 

 

 
▪ Escape Characters 

\' Single Quote 

\\ Backslash 

\n New Line 

\r Carriage Return 

\t Tab 

\b Backspace 

 

  



 

17 ADVANCED LEVEL ICT © AMILA JAYASENA 

Python Booleans 

 

Python code output 

print (10 > 9) 
print (10 == 9) 
print (10 < 9) 
print (True / True) 
print (False / False) 
print (True / False) 
print (False / True) 
 

 

 

Python code output 

a = 200 
b = 33 
 
if b > a: 
  print("b is greater than a") 
else: 
  print("b is not greater than a") 
 

 

 

Python code output 

print(bool("Hello")) 
print (bool (15)) 
 

 

 

Python code output 

x = "Hello" 
y = 15 
 
print(bool(x)) 
print(bool(y)) 
 

 

 

Python code output 

bool("abc") 
bool (123) 
bool (["apple", "cherry", "banana"]) 
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Python code output 

bool (False) 
bool (None) 
bool (0) 
bool ("") 
bool (()) 
bool ([]) 
bool ({}) 
 

 

 

▪ Functions can Return a Boolean 

 

Python code output 

class myclass(): 
  def __len__(self): 
    return 0 
 
myobj = myclass() 
print(bool(myobj)) 
 

 

 

Python code output 

def myFunction() : 
  return True 
 
print(myFunction()) 
 

 

 

Python code output 

def myFunction() : 
  return True 
 
if myFunction(): 
  print("YES!") 
else: 
  print("NO!") 
 

 

 

Python code output 

x = 200 
print(isinstance(x, int)) 
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5. Python Operators 

1) Arithmetic operators 
2) Assignment operators 
3) Comparison operators 
4) Logical operators 
5) Identity operators 
6) Membership operators 
7) Bitwise operators 

1) Python Arithmetic Operators 

 

Operator Description Example 

+ Addition 2 + 3 (returns 5) 

- Subtraction 5 - 2 (returns 3) 

* Multiplication 2 * 3 (returns 6) 

/ Division 10 / 3 (returns 3.3333) 

// Floor Division 10 // 3 (returns 3) 

% Modulo 10 % 3 (returns 1) 

** Exponentiation 2 ** 3 (returns 8) 

 

Python code output 

x = 5 
y = 3 
print (x + y) 

 

x = 5 
y = 3 
print (x - y) 

 

x = 5 
y = 3 
print (x * y) 

 

x = 12 
y = 3 
print (x / y) 

 

x = 5 
y = 2 
print (x % y) 

 

x = 2 
y = 5 
print (x ** y 

 

x = 15 
y = 2 
print (x // y) 
 

rounds the result down to the nearest whole 
number 
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2) Python Assignment Operators 

 

Operator Description Example 

= Assigns the value to a variable x = 5 (x is assigned the value 5) 

+= Adds the value and assigns it to a variable x += 3 (x is incremented by 3) 

-= Subtracts the value and assigns it to a 
variable 

x -= 2 (x is decremented by 2) 

*= Multiplies the value and assigns it to a 
variable 

x *= 4 (x is multiplied by 4) 

/= Divides the value and assigns it to a 
variable 

x /= 2 (x is divided by 2) 

//= Performs floor division and assigns it to a 
variable 

x //= 3 (x is floor divided by 3) 

%= Calculates the modulus and assigns it to a 
variable 

x %= 2 (x is assigned the remainder of x 
divided by 2) 

**= Performs exponentiation and assigns it to 
a variable 

x **= 3 (x is raised to the power of 3) 

&= Performs bitwise AND and assigns it to a 
variable 

x &= 3 (x is bitwise ANDed with 3) 

` =` Performs bitwise OR and assigns it to a 
variable 

^= Performs bitwise XOR and assigns it to a 
variable 

x ^= 2 (x is bitwise XORed with 2) 

>>= Performs right shift and assigns it to a 
variable 

x >>= 1 (x is right-shifted by 1) 

<<= Performs left shift and assigns it to a 
variable 

x <<= 2 (x is left-shifted by 2) 

 

Python code output 

x = 5 
x += 3 
print(x) 
 

 

x = 5 
x -= 3 
print(x) 
 

 

x = 5 
x *= 3 
print(x) 
 

 

x = 5 
x /= 3 
print(x) 
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x = 5 
x%=3 
print(x) 
 

 

x = 5 
x//=3 
print(x) 
 

 

x = 5 
x//=3 
print(x) 
 

 

x = 5 
x &= 3 
print(x) 
 

 

x = 5 
x |= 3 
print(x) 
 

 

x = 5 
x ^= 3 
print(x) 
 

 

x = 5 
x >>= 3 
print(x) 
 

 

x = 5 
x <<= 3 
print(x) 
 

 

 

3) Python Comparison Operators 

 

Operator Description Example 

== Equal to x == y (returns True if x is equal to y, otherwise False) 

!= Not equal to x != y (returns True if x is not equal to y, otherwise False) 

> Greater than x > y (returns True if x is greater than y, otherwise False) 

< Less than x < y (returns True if x is less than y, otherwise False) 

>= Greater than or equal 
to 

x >= y (returns True if x is greater than or equal to y, 
otherwise False) 

<= Less than or equal to x <= y (returns True if x is less than or equal to y, otherwise 
False) 
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Python code output 

x = 5 
y = 3 
print (x == y) 
 

 

x = 5 
y = 3 
print (x != y) 
 

 

x = 5 
y = 3 
print (x > y) 
 

 

x = 5 
y = 3 
print (x < y) 
 

 

x = 5 
y = 3 
print (x >= y) 
 

 

x = 5 
y = 3 
print (x <= y) 
 

 

 

4) Python Logical Operators 

 

Operator Description Example 

and Returns True if both operands are True, otherwise False x and y 

or Returns True if either operand is True, otherwise False x or y 

not Returns the opposite boolean value of the operand not x 

 

Python code output 

x = 5 
print (x > 3 and x < 10) 
 

 

x = 5 
print (x > 3 or x < 4) 
 

 

x = 5 
print (not(x > 3 and x < 10)) 
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5) Python Identity Operators 

Operator Description Example 

is Returns True if the operands are the same object, otherwise False x is y 

is not Returns True if the operands are not the same object, otherwise False x is not y 

 

Python code output 

x = ["apple", "banana"] 
y = ["apple", "banana"] 
z = x 
print(x is z) 
print(x is y) 
print(x == y) 

 

x = ["apple", "banana"] 
y = ["apple", "banana"] 
z = x 
print(x is not z) 
print(x is not y) 
print(x != y) 
 

 

 

6) Python Membership Operators 

 

Operator Description Example 

in Returns True if the value or element is found in the sequence or collection, 
otherwise False 

x in y 

not in Returns True if the value or element is not found in the sequence or 
collection, otherwise False 

x not in 
y 

 

Python code output 

x = ["apple", "banana"] 
print("banana" in x) 
 

 

x = ["apple", "banana"] 
print("pineapple" not in x) 
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7) Python Bitwise Operators 

 

Operator Description Example 

& Bitwise AND x & y 

| Bitwise OR x | y 

^ Bitwise XOR x ^ y 

~ Bitwise NOT ~x 

<< Left shift x << n 

>> Right shift x >> n 

 

Python code output 

a = 60             
b = 13             
c = 0 
c = a & b       
print (c) 
 

 

c = a | b  
print (c) 
 

 

c = a ^ b 
print (c) 
 

 

c = ~a 
print (c) 
 

 

c = a << 2 
print (c) 
 

 

c = a >> 2 
print (c) 
 

 

 

  



 

25 ADVANCED LEVEL ICT © AMILA JAYASENA 

6. Python operator precedence 

I. Here is the general precedence and associativity of operators in Python, from highest to 

lowest: 

 

1. Parentheses: ( ) 

2. Exponentiation: ** 

3. Unary operators: +x, -x, ~x 

4. Multiplication, Division, and Remainder: *, /, //, % 

5. Addition and Subtraction: +, - 

6. Bitwise Shifts: <<, >> 

7. Bitwise AND: & 

8. Bitwise XOR: ^ 

9. Bitwise OR: | 

10. Comparison Operators: ==, !=, >, <, >=, <=, is, is not, in, not in 

11. Logical NOT: not 

12. Logical AND: and 

13. Logical OR: or 

 

result1 = 2 + 3 * 4       # Result: 14 (Multiplication has higher precedence than addition) 

result2 = (2 + 3) * 4     # Result: 20 (Parentheses override precedence) 

result3 = 2 + 3 ** 2      # Result: 11 (Exponentiation has higher precedence than addition) 

result4 = (2 + 3) ** 2    # Result: 25 (Parentheses override precedence) 

result5 = 2 * 3 + 4 / 2   # Result: 8 (Multiplication and division have equal precedence, evaluated 
left-to-right) 

result6 = 2 * (3 + 4) / 2 # Result: 7 (Parentheses override precedence) 

 

print(result1) 

print(result2) 

print(result3) 

print(result4) 

print(result5) 

print(result6) 
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