

2 ADVANCED LEVEL ICT © AMILA JAYASENA

Table of content

1. Structure of a program

2. Comments

3. Constants and Variables

4. Primitive data types

5. Operator categories
i. Arithmetical

ii. relational
iii. logical
iv. bitwise

6. Operator precedence

7. Input / output
i. Input from keyboard

ii. Output to standard devices

8. Control Structures
i. Sequence

ii. Selection
iii. Repetition

a. Iteration
b. Looping

9. Types of subprograms
i. Built in

ii. User defined
a. Structure
b. Parameter passing
c. Return values
d. Default values
e. Scope of variables

10. Data structures
i. Strings

ii. Lists
iii. Tuples
iv. Dictionaries

11. Error Handling

12. File handling
i. Basic file operations

13. Database connection
i. Connecting to a database

ii. Retrieve data
iii. Add, modify and delete data

14. Searching techniques and Sorting techniques
i. Sequential search

ii. Bubble sort

3 ADVANCED LEVEL ICT © AMILA JAYASENA

15. Algorithms
i. Flow charts

ii. Pseudo codes
iii. Hand traces

16. Evolution of programming languages
i. Programming paradigms o Imperative languages

a) Declarative languages
b) Object oriented languages

17. Need of program translation
i. Source program

ii. Object program
iii. Program translators

a) Interpreters
b) Compilers
c) Hybrid approach

iv. Linkers

18. Uses problem-solving process
i. Understanding the problem
ii. Defining the problem and boundaries

iii. Planning solution
iv. Implementation

• Modularization

• Top-down design and stepwise refinement

• Structure charts

19. Basic features of IDE
i. Instructions to use

a) Opening and saving files
b) Compiling,
c) executing programs

ii. Debugging facilities

4 ADVANCED LEVEL ICT © AMILA JAYASENA

Section 1

5 ADVANCED LEVEL ICT © AMILA JAYASENA

1. First Python Program

Python code Output

print ("Hello, World!")

2. Python Comments

Single Line Comments

#This is a comment

print ("Hello, World!")

print ("Hello, World!") #This is a comment

#print ("Hello, World!")

Multi Line Comments

#This is a comment
#written in
#More than just one line
print ("Hello, World!")

"""
This is a comment
written in
more than just one line
"""
print ("Hello, World!")

3. Python Variables

• Variables

Python code output

x = 5
y = "John"
print(x)
print(y)

6 ADVANCED LEVEL ICT © AMILA JAYASENA

Python code output

x = 4
x = "Sally"
print(x)

• Casting

Python code output

x = str (3)
y = int (3)
z = float (3)
print(x)
print(y)
print(z)

• Get the Datatype

Python code output

x = 5
y = "John"
print(type(x))
print(type(y))

• Single or Double Quotes?

Python code output

x = "John"
y = 'John'
print(x)
print(y)

• Case-Sensitive

Python code output

a = 4
A = "Sally"
print(a)
print(A)

7 ADVANCED LEVEL ICT © AMILA JAYASENA

Python - Variable Names

• විචල්‍ය නාමයක් අකුරකින් හ ෝ යටි ඉරි අකුරින් ආරම්භ විය යුතුය

• විචල්‍ය නාමයක් අංකයකින් ආරම්භ කළ හනා ැක

• විචල්‍ය නාමයක අඩංගු විය ැක්හක් ඇල්ෆා-සංඛ්‍යා අක්ෂර ස යටි ඉරි (A-z, 0-9, ස _) පමණි

• විචල්‍ය නම් අවස්ථා-සංහේදී හේ (වයස, වයස ස AGE යනු විවිධ විචල්‍ය තුනකි)

• A variable name must start with a letter or the underscore character

• A variable name cannot start with a number

• A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

• Variable names are case-sensitive (age, Age and AGE are three different variables)

Variable names: Correct or incorrect

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

2myvar = "John"

my-var = "John"

my var = "John"

▪ Multi Words Variable Names

Camel Case Pascal Case Snake Case

myVariableName = "John" MyVariableName = "John" my_variable_name = "John"

▪ Many Values to Multiple Variables

Python code output

x, y, z = "Orange", "Banana", "Cherry"
print(x)
print(y)
print(z)

8 ADVANCED LEVEL ICT © AMILA JAYASENA

▪ One Value to Multiple Variables

Python code output

x = y = z = "Orange"
print(x)
print(y)
print(z)

▪ Python - Output Variables

Python code output

x = "awesome"
print ("Python is " + x)

Python code output

x = "Python is "
y = "awesome"
z = x + y
print(z)

Python code output

x = 5
y = 10
print (x + y)

Python code output

x = 5
y = "John"
print (x + y)

▪ Python - Global and local Variables

Python code output

x = "awesome"
def myfunc():
 print("Python is " + x)
myfunc()

9 ADVANCED LEVEL ICT © AMILA JAYASENA

4. Python Data Types

Python code output

x = "awesome"
def myfunc():
 x = "fantastic"
 print("Python is " + x)
myfunc()
print("Python is " + x)

▪ Get the Data Type

Python code output

x = 5
print(type(x))

▪ Setting the Data Type

Python code output

x = "Hello World"
print(type(x))

x = 20
print(type(x))

x = 20.5
print(type(x))

x = ["apple", "banana", "cherry"]
print(type(x))

x = ("apple", "banana", "cherry")
print(type(x))

Text str

Numeric int, float

Sequence list, tuple, range

Mapping dict

Set set

Boolean bool

10 ADVANCED LEVEL ICT © AMILA JAYASENA

x = range (6)
print(type(x))

x = {"name”: "John", "age”: 36}
print(type(x))

x = {"apple", "banana", "cherry"}
print(type(x))

x = True
print(type(x))

▪ Setting the Specific Data Type

Python code output

x = str("Hello World")
print(type(x))

x = int (20)
print(type(x))

x = float (20.5)
print(type(x))

▪ The global Keyword

Python code output

def myfunc():
 global x
 x = "fantastic"

myfunc()

print("Python is " + x)

x = "awesome"
def myfunc():
 global x
 x = "fantastic"
myfunc()

print("Python is " + x)

11 ADVANCED LEVEL ICT © AMILA JAYASENA

Python Numbers

▪ Type Conversion

Python code output

x = 1
y = 2.8
a = float(x)
b = int(y)
print(a)
print(b)
print(type(a))
print(type(b))

▪ Random Number

Python code output

import random
print(random.randrange(1, 50))

Python Casting

Python code output

x = int (1)
y = int (2.8)
z = int ("3")
print(x)
print(y)
print(z)

x = float (1)
y = float (2.8)
z = float ("3”)
w = float ("4.2")
print(x)
print(y)
print(z)

x = str("s1")
y = str (2)
z = str (3.0)
print(x)
print(y)
print(z)

12 ADVANCED LEVEL ICT © AMILA JAYASENA

Python Strings

Python code output

print("Hello")
print('Hello')

Python code output

a = "Hello"
print(a)

▪ Multiline Strings

Python code output

a = """Python is a high-level, general-purpose
programming language."""
print(a)

a = '''Python is a high-level, general-purpose
programming language. '''
print(a)

▪ Strings are Arrays

Python code output

a = "Hello, World!"
print(a[1])

▪ Looping Through a String

Python code output

for x in "banana":
 print(x)

13 ADVANCED LEVEL ICT © AMILA JAYASENA

▪ String Length

Python code output

a = "Hello, World!"
print(len(a))

▪ Check String

Python code output

txt = "The best things in life are free!"
print("free" in txt)

txt = "The best things in life are free!"
if "free" in txt:
 print("Yes, 'free' is present.")

▪ Check if NOT

Python code output

txt = "The best things in life are free!"
print("expensive" not in txt)

txt = "The best things in life are free!"
if "expensive" not in txt:
 print("Yes, 'expensive' is NOT present.")

▪ Python - Slicing Strings

Python code output

b = "Hello, World!"
print(b[2:5])

▪ Slice from the Start

Python code output

b = "Hello, World!"
print(b[:5])

14 ADVANCED LEVEL ICT © AMILA JAYASENA

▪ Slice to the End

Python code output

b = "Hello, World!"
print(b[2:])

▪ Negative Indexing

Python code output

b = "Hello, World!"
print(b[-5:-2])

▪ Upper Case

Python code output

a = "Hello, World!"
print(a.upper())

▪ Split

Python code output

a = "Hello, World!"
print(a.split("l"))

▪ String Concatenation

Python code output

a = "Hello"
b = "World"
c = a + b
print(c)

a = "Hello"
b = "World"
c = a + " " + b
print(c)

15 ADVANCED LEVEL ICT © AMILA JAYASENA

▪ Python - Format - Strings

Python code output

age = 36
txt = "My name is John, I am " + age
print(txt)

Python code output

age = 36
txt = "My name is John, and I am {}"
print(txt.format(age))

Python code

quantity = 3
itemno = 567
price = 49.95
myorder = "I want {} pieces of item {} for {} dollars."
print(myorder.format(quantity, itemno, price))

output

Python code

quantity = 3
itemno = 567
price = 49.95
myorder = "I want to pay {2} dollars for {0} pieces of item {1}."
print(myorder.format(quantity, itemno, price))

output

16 ADVANCED LEVEL ICT © AMILA JAYASENA

▪ Python - Escape Characters

Python code

txt = "We are the so-called "Vikings" from the north."
print(txt)

txt = "We are the so-called \"Vikings\" from the north."
print(txt)

txt = "We are the so-called \\Vikings\\ from the north."
print(txt)

txt = "We are the so-called \nVikings\n from the north."
print(txt)

txt = "We are the so-called \rVikings\r from the north."
print(txt)

txt = "We are the so-called \tVikings\t from the north."
print(txt)

txt = "We are the so-called \bVikings\b from the north."
print(txt)

▪ Escape Characters

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

17 ADVANCED LEVEL ICT © AMILA JAYASENA

Python Booleans

Python code output

print (10 > 9)
print (10 == 9)
print (10 < 9)
print (True / True)
print (False / False)
print (True / False)
print (False / True)

Python code output

a = 200
b = 33

if b > a:
 print("b is greater than a")
else:
 print("b is not greater than a")

Python code output

print(bool("Hello"))
print (bool (15))

Python code output

x = "Hello"
y = 15

print(bool(x))
print(bool(y))

Python code output

bool("abc")
bool (123)
bool (["apple", "cherry", "banana"])

18 ADVANCED LEVEL ICT © AMILA JAYASENA

Python code output

bool (False)
bool (None)
bool (0)
bool ("")
bool (())
bool ([])
bool ({})

▪ Functions can Return a Boolean

Python code output

class myclass():
 def __len__(self):
 return 0

myobj = myclass()
print(bool(myobj))

Python code output

def myFunction() :
 return True

print(myFunction())

Python code output

def myFunction() :
 return True

if myFunction():
 print("YES!")
else:
 print("NO!")

Python code output

x = 200
print(isinstance(x, int))

19 ADVANCED LEVEL ICT © AMILA JAYASENA

5. Python Operators

1) Arithmetic operators
2) Assignment operators
3) Comparison operators
4) Logical operators
5) Identity operators
6) Membership operators
7) Bitwise operators

1) Python Arithmetic Operators

Operator Description Example

+ Addition 2 + 3 (returns 5)

- Subtraction 5 - 2 (returns 3)

* Multiplication 2 * 3 (returns 6)

/ Division 10 / 3 (returns 3.3333)

// Floor Division 10 // 3 (returns 3)

% Modulo 10 % 3 (returns 1)

** Exponentiation 2 ** 3 (returns 8)

Python code output

x = 5
y = 3
print (x + y)

x = 5
y = 3
print (x - y)

x = 5
y = 3
print (x * y)

x = 12
y = 3
print (x / y)

x = 5
y = 2
print (x % y)

x = 2
y = 5
print (x ** y

x = 15
y = 2
print (x // y)

rounds the result down to the nearest whole
number

20 ADVANCED LEVEL ICT © AMILA JAYASENA

2) Python Assignment Operators

Operator Description Example

= Assigns the value to a variable x = 5 (x is assigned the value 5)

+= Adds the value and assigns it to a variable x += 3 (x is incremented by 3)

-= Subtracts the value and assigns it to a
variable

x -= 2 (x is decremented by 2)

*= Multiplies the value and assigns it to a
variable

x *= 4 (x is multiplied by 4)

/= Divides the value and assigns it to a
variable

x /= 2 (x is divided by 2)

//= Performs floor division and assigns it to a
variable

x //= 3 (x is floor divided by 3)

%= Calculates the modulus and assigns it to a
variable

x %= 2 (x is assigned the remainder of x
divided by 2)

**= Performs exponentiation and assigns it to
a variable

x **= 3 (x is raised to the power of 3)

&= Performs bitwise AND and assigns it to a
variable

x &= 3 (x is bitwise ANDed with 3)

` =` Performs bitwise OR and assigns it to a
variable

^= Performs bitwise XOR and assigns it to a
variable

x ^= 2 (x is bitwise XORed with 2)

>>= Performs right shift and assigns it to a
variable

x >>= 1 (x is right-shifted by 1)

<<= Performs left shift and assigns it to a
variable

x <<= 2 (x is left-shifted by 2)

Python code output

x = 5
x += 3
print(x)

x = 5
x -= 3
print(x)

x = 5
x *= 3
print(x)

x = 5
x /= 3
print(x)

21 ADVANCED LEVEL ICT © AMILA JAYASENA

x = 5
x%=3
print(x)

x = 5
x//=3
print(x)

x = 5
x//=3
print(x)

x = 5
x &= 3
print(x)

x = 5
x |= 3
print(x)

x = 5
x ^= 3
print(x)

x = 5
x >>= 3
print(x)

x = 5
x <<= 3
print(x)

3) Python Comparison Operators

Operator Description Example

== Equal to x == y (returns True if x is equal to y, otherwise False)

!= Not equal to x != y (returns True if x is not equal to y, otherwise False)

> Greater than x > y (returns True if x is greater than y, otherwise False)

< Less than x < y (returns True if x is less than y, otherwise False)

>= Greater than or equal
to

x >= y (returns True if x is greater than or equal to y,
otherwise False)

<= Less than or equal to x <= y (returns True if x is less than or equal to y, otherwise
False)

22 ADVANCED LEVEL ICT © AMILA JAYASENA

Python code output

x = 5
y = 3
print (x == y)

x = 5
y = 3
print (x != y)

x = 5
y = 3
print (x > y)

x = 5
y = 3
print (x < y)

x = 5
y = 3
print (x >= y)

x = 5
y = 3
print (x <= y)

4) Python Logical Operators

Operator Description Example

and Returns True if both operands are True, otherwise False x and y

or Returns True if either operand is True, otherwise False x or y

not Returns the opposite boolean value of the operand not x

Python code output

x = 5
print (x > 3 and x < 10)

x = 5
print (x > 3 or x < 4)

x = 5
print (not(x > 3 and x < 10))

23 ADVANCED LEVEL ICT © AMILA JAYASENA

5) Python Identity Operators

Operator Description Example

is Returns True if the operands are the same object, otherwise False x is y

is not Returns True if the operands are not the same object, otherwise False x is not y

Python code output

x = ["apple", "banana"]
y = ["apple", "banana"]
z = x
print(x is z)
print(x is y)
print(x == y)

x = ["apple", "banana"]
y = ["apple", "banana"]
z = x
print(x is not z)
print(x is not y)
print(x != y)

6) Python Membership Operators

Operator Description Example

in Returns True if the value or element is found in the sequence or collection,
otherwise False

x in y

not in Returns True if the value or element is not found in the sequence or
collection, otherwise False

x not in
y

Python code output

x = ["apple", "banana"]
print("banana" in x)

x = ["apple", "banana"]
print("pineapple" not in x)

24 ADVANCED LEVEL ICT © AMILA JAYASENA

7) Python Bitwise Operators

Operator Description Example

& Bitwise AND x & y

| Bitwise OR x | y

^ Bitwise XOR x ^ y

~ Bitwise NOT ~x

<< Left shift x << n

>> Right shift x >> n

Python code output

a = 60
b = 13
c = 0
c = a & b
print (c)

c = a | b
print (c)

c = a ^ b
print (c)

c = ~a
print (c)

c = a << 2
print (c)

c = a >> 2
print (c)

25 ADVANCED LEVEL ICT © AMILA JAYASENA

6. Python operator precedence

I. Here is the general precedence and associativity of operators in Python, from highest to

lowest:

1. Parentheses: ()

2. Exponentiation: **

3. Unary operators: +x, -x, ~x

4. Multiplication, Division, and Remainder: *, /, //, %

5. Addition and Subtraction: +, -

6. Bitwise Shifts: <<, >>

7. Bitwise AND: &

8. Bitwise XOR: ^

9. Bitwise OR: |

10. Comparison Operators: ==, !=, >, <, >=, <=, is, is not, in, not in

11. Logical NOT: not

12. Logical AND: and

13. Logical OR: or

result1 = 2 + 3 * 4 # Result: 14 (Multiplication has higher precedence than addition)

result2 = (2 + 3) * 4 # Result: 20 (Parentheses override precedence)

result3 = 2 + 3 ** 2 # Result: 11 (Exponentiation has higher precedence than addition)

result4 = (2 + 3) ** 2 # Result: 25 (Parentheses override precedence)

result5 = 2 * 3 + 4 / 2 # Result: 8 (Multiplication and division have equal precedence, evaluated
left-to-right)

result6 = 2 * (3 + 4) / 2 # Result: 7 (Parentheses override precedence)

print(result1)

print(result2)

print(result3)

print(result4)

print(result5)

print(result6)

26 ADVANCED LEVEL ICT © AMILA JAYASENA

Section 2

